The Monthly Digest – Food Waste September 2017

Food wastes and by-products
R & D abstracts – September 2017
Enhanced polyhydroxyalkanoate (PHA) production from the organic fraction of municipal solid waste by using mixed microbial culture (research)

In Europe, almost 87.6 million tonnes of food waste are produced. Despite the high biological value of food waste, traditional management solutions do not consider it as a precious resource. Many studies have reported the use of food waste for the production of high added value molecules. Polyhydroxyalkanoates (PHAs) represent a class of interesting bio-polyesters accumulated by different bacterial cells, and has been proposed for production from the organic fraction of municipal solid waste (OFMSW). Nevertheless, until now, no attention has been paid to the entire biological process leading to the transformation of food waste to organic acids (OA) and then to PHA, getting high PHA yield per food waste unit. In particular, the acid-generating process needs to be optimized, maximizing OA production from OFMSW. To do so, a pilot-scale Anaerobic Percolation Biocell Reactor (100 L in volume) was used to produce an OA-rich percolate from OFMSW which was used subsequently to produce PHA. The optimized acidogenic process resulted in an OA production of 151 g kg−1 from fresh OFMSW. The subsequent optimization of PHA production from OA gave a PHA production, on average, of 223 ± 28 g kg−1total OA fed. Total mass balance indicated, for the best case studied, a PHA production per OFMSW weight unit of 33.22 ± 4.2 g kg−1 from fresh OFMSW, corresponding to 114.4 ± 14.5 g kg−1 of total solids from OFMSW. PHA composition revealed a hydroxybutyrate /hydroxyvalerate (%) ratio of 53/47 and Mw of 8∙105 kDa with a low polydispersity index, i.e. 1.4. This work showed how by optimizing acidic fermentation it could be possible to get a large amount of OA from OFMSW to be then transformed into PHA. This step is important as it greatly affects the total final PHA yield. Data obtained in this work can be useful as the starting point for considering the economic feasibility of PHA production from OFMSW by using mixed culture.

Colombo B et al (2017) Biotechnology for Biofuels 10:201

 

Treatment of supermarket vegetable wastes to be used as alternative substrates in bioprocesses (research)

Fruits and vegetables have the highest wastage rates at retail and consumer levels. These wastes have promising potential for being used as substrates in bioprocesses. However, an effective hydrolysis of carbohydrates that form these residues has to be developed before the biotransformation. In this work, vegetable wastes from supermarket (tomatoes, green peppers and potatoes) have been separately treated by acid, thermal and enzymatic hydrolysis processes in order to maximise the concentration of fermentable sugars in the final broth. For all substrates, thermal and enzymatic processes have shown to be the most effective. A new combined hydrolysis procedure including these both treatments was also assayed and the enzymatic step was successfully modelled. With this combined hydrolysis, the percentage of reducing sugars extracted was increased, in comparison with the amount extracted from non-hydrolysed samples, approximately by 30% in the case of tomato and green peeper wastes. For potato wastes this percentage increased from values lower than 1% to 77%. In addition, very low values of fermentation inhibitors were found in the final broth.

Diaz AI et al (2017) Waste Management 67:59-66

Scroll to Top